Number of object photons hitting the chip

Assuming a wavelength of 555 nm and an extinction (attenuation of light in the atmosphere) of 0.28 mag (https://en.wikipedia.org/wiki/Extinction (astronomy)), the following formula can be used to determine the number of incoming photons: (https://www.uniulm.de/fileadmin/website uni ulm/nawi.inst.251/Didactics/quantenchemie/htmI/PhAllF.htmI)

$$
N=\frac{E_{V}}{E_{\text {Photo }}}
$$

\mathbf{E}_{v} is the illuminance, into which the apparent visual brightness mv in [mag] is included (https://de.wikipedia.org/wiki/Scheinbare Helligkeit):

$$
E_{V}=10^{-0.4\left(\frac{m_{V}}{m a g}+14.2\right)} l x
$$

, lx ' is the unit of illuminance and can be converted to $\mathrm{W} / \mathrm{m}^{2}$ at 555 nm by a factor of 0.01464 . (https://www.translatorscafe.com/unit-converter/de-DE/illumination/1-11/luxwatt/centimeter\�\�\ (at\ 555\ nm)/), where applies: $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$.

If the extinction of 0.28 mag is included, the formula results:

$$
E_{V}=10^{-0.4\left(\frac{m_{V}+0.28 \mathrm{mag}}{m a g}+14.2\right)} \frac{\mathrm{J}}{\mathrm{~s} * \mathrm{~m}^{2}}
$$

$E_{\text {Photon }}$ is the energy of the photons at 555 nm (https://en.wikipedia.org/wiki/Photon) and is calculated from:

$$
E_{\text {Phot }}=\frac{h * c}{\lambda}
$$

h - Planck constant with $6.626 * 10^{-34} \mathrm{Js}$
c - speed of light with $299,792,458 \mathrm{~m} / \mathrm{s}$

Combined, this results in the formula:

$$
\begin{gathered}
N=\frac{E_{V}}{E_{\text {Photo }}}=\frac{10^{-0.4\left(\frac{m_{V}+0.28 \mathrm{mag}}{m a g}+14.2\right)} \frac{\mathrm{J}}{\mathrm{~S} * \mathrm{~m}^{2}}}{\frac{h * C}{\lambda}} \\
N=\frac{10^{-0.4\left(\frac{m_{V}+0.28 \mathrm{mag}}{m a g}+14.2\right)} * 0.01464 \frac{\mathrm{~J}}{\mathrm{~s} * \mathrm{~m}^{2}}}{6.626 * 10^{-34} \mathrm{JS} * 299,792,458 \frac{\mathrm{~m}}{\mathrm{~S}}} \\
555 * 10^{-9} \mathrm{~m} \\
N=\frac{10^{-0.4\left(\frac{m_{V}+0.28 \mathrm{mag}}{m a g}+14.2\right)} * 0.01464}{3.579 * 10^{-19}} \text { Photonen } / \mathrm{s} / \mathrm{m}^{2}
\end{gathered}
$$

A similar formula is derived in https://articles.adsabs.harvard.edu/pdf/1993JRASC..87..123R (formula 10), but using the surface temperature \mathbf{T} of a star.

$$
N=6.85 * 10^{14} * \frac{10^{-0.4 m_{V}}}{T} \text { Photonen } / \mathrm{s} / \mathrm{m}^{2}
$$

If the typical surface temperature of a medium-sized $\operatorname{star}(A 0)$ of $10,000 \mathrm{~K}$ is used here, similar values are obtained.

Apparent magnitude of the star [mag]	Photons/s/m s on the earth's surface (wavelength)	Photons/s/m $\mathbf{2}$ on the earth's surface (temperature)
0	$66,033,136,364$	$68,500,000,000$
2	$10,465,546,830$	$10,856,518,368$
4	$1,658,677,393$	$1,720,642,206$
6	$262,882,651$	$272,703,412$
8	$41,664,092$	$43,220,578$
10	$6,603,314$	$6,850,000$
12	$1,046,555$	$1,085,652$
14	165,868	172,064
16	26,288	27,270
18	4,166	4,322
20	660	685
22	105	109
24	17	17
26	3	3
28	0	0

This consideration refers to the area of $1 \mathrm{~m}^{2}$. If this is considered for a telescope aperture of e.g. $8^{\prime \prime}$ of a Schmidt-Cassegrain-Telescope, the following values are achieved:

- Assumption: Use of an 8" SC telescope \rightarrow Ø203 mm mirror $\rightarrow 637.7 \mathrm{~mm}^{2}$ mirror area.
- SC telescopes have a Schmidt plate mirror ($\varnothing 75 \mathrm{~mm} \rightarrow 235.6 \mathrm{~mm}^{2}$ mirror area) at the front entrance glass plate for deflection, which has to be subtracted from the effective mirror diameter, because no photons enter the tube at this point.
- This leaves a remaining effective mirror area of $402.1 \mathrm{~mm}^{2} \rightarrow 0.0004021 \mathrm{~m}^{2}$.
- For an object with an apparent magnitude of 14 mag 170.000 photons per second hit one square meter of the earth surface.
- Calculated on the effective mirror area, only 68 photons per second hit the mirror and thus the whole chip.

